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Magnetic Resonance Imaging (MRI) is an indispensable tool in the diagnosis of brain
diseases due to painlessness and safety. Nevertheless, Rician noise is inevitably injected
during the image acquisition process, which leads to poor observation and interferes
with the treatment. Owing to the complexity of Rician noise, using the elimination
method of Gaussian to remove it does not perform well. Therefore, the feature fusion
and attention network (FFA-DMRI) is proposed to separate noise from observed
MRI. Inspired by the attention-guided CNN network (ADNet) and Convolutional block
attention module (CBAM), a spatial attention mechanism has been specially designed
to obtain the area of interest in MRI. Furthermore, the feature fusion block concatenates
local with global information, which makes full use of the multilevel structure and
boosts the expressive ability of network. The comprehensive experiments on Alzheimer’s
disease neuroimaging initiative dataset (ADNI) have demonstrated high effectiveness
of FFA-DMRI with maintaining the crucial brain details. Moreover, in terms of visual
inspections, the denoising results are also consistent with human perception.

Keywords: magnetic resonance imaging, brain, denoising, feature fusion, attention mechanism

INTRODUCTION

Magnetic Resonance Imaging (MRI) of brains, with the superior features of non-radiation, non-
invasiveness, and high resolution, is notable for diagnosis and treatment (Ikram et al., 2019; Jiang
et al., 2019; Yu et al., 2019; Tripathi and Bag, 2020). In clinical practice, high-quality MRI can
provide clear structural and functional information on brain tissues. However, noise is introduced
into the raw image due to the circulation of magnetic fields and the interaction of magnets in MRI
machines, which may hide the details of brain tissues and hinder the auto-computerized analysis
(Jiang et al., 2017). Therefore, noise removal is a vital task to recover the clean MRI before the
images are applied to diagnosis.

Previous research has established that the noise in MRI is governed by the Rician distribution,
in which both real and imaginary parts are corrupted by Gaussian noise with equal variance
(Bhadauria and Dewal, 2013; Li et al., 2020). The Rician distribution is signal-dependent as distinct
from additive Gaussian noise. In other words, Rician noise is related to the image, and utilizing
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Gaussian denoising methods directly to remove it usually yields
poor results. Thus, the right way to separate noise from the
raw MRI without losing critical details is a huge challenge
(Cai et al., 2020a).

With the increasing demand for image quality, a number of
methods have been proposed for denoising. Existing methods
can be mainly classified into two categories: transform domain
methods and filtering methods (Mohan et al., 2014). The purpose
of the transform domain method is to convert the original signal
into a pattern that can remove noise more easily. For instance,
a bilateral filtering scheme was proposed based on wavelets,
in which the noise coefficient is expressed effectively by an
undecimated wavelet transform (UDWT). There is a nice trade-
off between the effect of noise removal and feature retention
(Anand and Sahambi, 2010; Cai et al., 2020b). Based on wavelet
shrinkage, the iterative scheme estimates the signal wavelet
coefficients from the noisy images (Yu and Zhao, 2008). For
signal high-dimensional singularities, wavelet transform does not
perform well. Curvelet transform makes up for the shortcomings
(Mohan et al., 2014). In this transform, edge directions are
reproduced using the directivity and anisotropy of the curve
(Do and Vetterli, 2005). However, the wavelet transform fails to
resolve the curve with smooth edges. To overcome the drawback,
a geometrical image transform was proposed, which greatly
captures contours and details in MRI.

The filter methods, generally grouped into linear and non-
linear parts, are adapted to remove noise in MRI. For linear
filters, spatial filters and temporal filters are commonly employed
(McVeigh et al., 1985; Mohan et al., 2014). Relatively, a
spatial filter decreases the variance in MRI; however, it faces
shortcomings in that it introduces the blurring of edges, which
results in part of the required information that cannot be
restored correctly (Soomro and Gao, 2016). Temporal filters
are utilized only to spin-echo images. Furthermore, to prevent
the aliasing artifacts, it is essential to select the appropriate
filter to match filter sampling intervals. If the filters are too
broad or too narrow, the performance is not satisfactory. For
non-linear spatial filters, using a linear approach directly is not
allowed. There are some typical examples in non-linear filters
such as anisotropic diffusion filter (ADF) (Sijbers et al., 1999)
and non-local means (NLM) (Coupé et al., 2006). The ADF
approach obtains the denoising images efficiently with sharp
edges. The filter of NLM employs redundant information to
restore noise-free images. On the basis of the filter, unbiased
NLM (Manjón et al., 2008) is exploited to improve the
SNR in MRI; meanwhile, it does not influence the obvious
structures. Nevertheless, the method has the shortcoming of high
computational complexity.

Recently, methodologies based on deep learning are used to
alleviate the above problem, such as deep plug-and-play super-
resolution (DPSR) (Zhang K. et al., 2019), fast and flexible
denoising convolutional neural network (FFDNet) (Zhang et al.,
2018), and variance-stabilizing transformation inspired networks
(VST-net) (Zhang M. et al., 2019). VST-net inherits the
structures of traditional variance-stabilizing transformation and
optimizes non-linear transformation through the design of a
deep learning network. That shows the great potential of deep

learning for denoising tasks. It is noted that the denoising
convolutional neural network (DnCNN) (Zhang et al., 2017a)
utilizes batch normalization and residual learning, which exhibits
high effectiveness in JPEG image deblocking, single image super-
resolution, and Gaussian denoising. Numerous deep learning
methods for denoising have achieved outstanding performance.
However, most research up to now has focused on the reduction
of Gaussian noise, real noise, and blind noise. To our best
knowledge, far too little attention has been paid to removing the
Rician noise in MRI.

In this work, we propose a feature fusion and attention
network (FFA-DMRI) for removing Rician noise in magnetic
resonance (MR) images. Inspired by the structure of attention-
guided CNN network (ADNet) (Tian et al., 2020), we have
designed the FFA-DMRI network to restore noise-free images
while maintaining critical brain tissues to the maximum
extent possible. The main contributions of this paper are
as follows:

(1) The proposed FFA-DMRI is dedicated to removing
Rician noise in MR images. In contrast to other deep
leaning methods for denoising, we specifically develop
a spatial attention mechanism to focus on the area-of-
interest of the brain.

(2) FFA-DMRI network is constructed with three blocks,
including the feature extraction block, the feature fusion
block, and the attention block. The feature extraction
block utilizes the common convolution and the dilated
convolution, which expands the receptive field and gains
the details effectively. The feature fusion block is designed
to combine the local and global features. Consequently, this
block obtains more contextual information and promotes
the reconstruction of pixels in MR images.

(3) The FFA-DMRI network is very superior for denoising
on the ADNI dataset. In comparative experiments, it is
competitive in quantitative metrics in terms of SSIM and
PSNR. From the visual inspection, the denoising results are
also in line with the human sense.

MATERIALS AND METHODS

Rician Noise in MRI
The raw image generated by magnetic resonance equipment
is K-space, including the real channel Prand the imaginary
channelPi. Both channels are governed by Gaussian noise with
equal variance σ2 and a mean value of zero (Zhu et al., 2009),
which can be given by{

Pr = R cos α+<

Pi = R sin α+ =
(1)

where R is the amplitude and α is the phase of raw signal. In
addition, < and = denote the independent Gaussian noise which
is injected into the real and the imaginary channel, respectively.
An inverse discrete Fourier transform (Briggs and Henson, 1995)
and the modular operation are exploited to reconstruct the MR
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images, which satisfies the human visual sense. The modular
operation can be expressed as follows:

D =
√
P2
r+P

2
i

=

√
(R cos α+<)2 + (R sin α+ =)2 (2)

After the non-linear transformation, the noise distribution is
converted from Gaussian to Rician (He and Greenshields, 2008).
The probability distribution function (PDF) of Rician noise can
be estimated as

p(D|R, σ) =
D
σ2 e
−

D2
+R2

2σ2 I0
(
RD
σ2

)
(3)

where I0 stands for the zeroth-order modified Bessel function
(Sijbers and den Dekker, 2004) when the discrete grid is
utilized to define MRI. From the PDF, it can be inferred
that Rician noise is associated with images. For images with
different signal-to-noise ratios (SNR), the distributions of Rician
noise are disparate. If the value of SNR is relatively high,
Rician distribution degenerates into a Gaussian distribution.
Conversely, it tends to the Rayleigh distribution in low SNR.
Therefore, compared with Gaussian noise, Rician noise is
more complicated.

Proposed Method
Network Architecture of FFA-DMRI
Inspired by ADNet (Tian et al., 2020), the FFA-DMRI is proposed
to eliminate noise in MRI. Figure 1 illustrates the overall
architecture of FFA-DMRI. The network constructed by three
sub-networks is as follows: a feature extraction block, a feature
fusion block, and an attention block. These blocks correspond to
the stages of denoising. Firstly, it employs common convolutions
and dilated convolutions to expand the receptive field and

acquires the features adequately. Furthermore, the operation of
concatenation between global and local information enhances the
expressive ability of network. Finally, the attention mechanism
guides the network to extract useful information by assigning
weights to different spatial positions and channels. The output
of the network is the residual MR image and the potential clean
image is obtained by subtracting the residual image from the
input noisy image.

According to the structure of FFA-DMRI, the input of the
network is noisy observed MRI, which is defined asS. The FFA-
DMRI aims to learn the residual image N as an output rather
than the potential clean imageC. Every block is assumed to be a
function; hence the execution process of network is defined as

N = gat(gfu(gex(S), S)) (4)

where gex, gfu, and gat denote the functions of the feature
extraction, feature fusion, and attention block, respectively. The
output N is the mapping of noise in MRI and the potential
clean image can be reconstructed by subtracting N from S. The
implementations can be expressed as

C = S− N (5)

Feature Extraction Block
It is known that the crucial structural information in complex
images is easily hidden, which leads to poor performance in
practice. Therefore, extracting the representative features is
notoriously hard but vital in deep learning. To overcome this
problem, during the course of training, the network of FFA-
DMRI is supposed to focus on the interest area of the brain
and suppress the insignificant region. Motivated by that, we have
designed the spatial attention mechanism inspired by CBAM
(Woo et al., 2018), which is suitable for MR images specifically.

FIGURE 1 | Overall architecture of the proposed FFA-DMRI.
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FIGURE 2 | Spatial attention module with an additional layer of maximum pooling.

FIGURE 3 | Spatial attention module with an additional layer of average pooling.

Figure 2 depicts the spatial attention module with an additional
layer of maximum pooling.

The attention module simulates the prioritization of visual
information in human perception. In order to make the network
pay more attention to the extraction of brain structure, an
additional layer of maximum pooling is concatenated on the
original architecture of CBAM. In this work, we consider another
situation in which a spatial attention module is added with a layer
of average pooling, as shown in Figure 3.

In terms of MR images, the pixels in the background are
mostly black, and thus the values are zero. With respect to
the brain regions, the pixel values are mostly greater than
zero. For average pooling, the operation preserves background
information and is suitable for the images where all pixels
contribute to the prediction. Thus, average pooling is less
applicable to MRI denoising. Relatively, maximum pooling is
utilized to extract textures and assists the network in focusing
on the brain regions, hence maximum pooling is selected in the
module. To sum up, we take advantage of spatial attention to
enhance the ability to extract brain features, which results in
spending a lower amount of computing resources and achieving
outstanding effects.

The batch normalization (BN) operation normalizes the input
data; hence, it will destroy the original contrast of MR images.
Besides, it has been pointed out that BN is more suitable to
map data with regular distribution (Li et al., 2020). From the
generation of Rician noise, it can be determined that the noise
is non-linear. Thus, we do not employ the BN operation in
the first two convolutions. Furthermore, the extraction of the
context plays a crucial role in computer vision applications. For
the denoising task, the construction of pixels is closely related

to the context information (Yu and Koltun, 2016). In order
to obtain more context, dilated convolution is utilized for the
network, which enlarges the receptive field without reducing
image resolution and losing details. Numerous works have been
reported in the validity of dilated convolution (Yu and Koltun,
2016; Wei et al., 2018). For example, compared with a common
convolution-based 3×3 kernel, a dilated convolution can serve
a 5×5 or greater receptive field, but no increase in the number
of parameters and computations. In FFA-DMRI, we integrate
the common convolution and dilated convolution to take full
advantage of information.

Feature Fusion Block
AlexNet (Krizhevsky et al., 2012), VGG-Net (Simonyan and
Zisserman, 2014), and other deep learning models yield excellent
results by increasing network layers. Nevertheless, on the one
hand, the deeper network presents the phenomenon of gradient
explosion and gradient disappearance. On the other hand, with
continuous convolution, the effect of shallow features on a
deep layer grows weak gradually. Thus, the way to extract
high-quality features is pivotal for denoising tasks. To cope
with the problem, we apply a lightweight and efficient feature-
fusion module to combine low-level and high-level features. The
module concatenates the intermediate feature map with the noisy
observed MRI at the same scale, which makes full use of the
structural information in the shallow network and boosts the
network performance.

At the end of the feature fusion block, the two layers
employ convolutions with the Rectified Linear Unit activation
function (ReLU) and batch normalization. Compared with
the sigmoid function, the ReLU function greatly reduces

Frontiers in Neuroscience | www.frontiersin.org 4 September 2020 | Volume 14 | Article 577937

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-577937 September 14, 2020 Time: 15:44 # 5

Hong et al. Brain MRI Denoising

FIGURE 4 | Channel attention module.

network computation and avoids the problem of gradient
disappearance. Additionally, the ReLU function increases the
non-linear relationship between the network layers, and thus it is
appropriate to process the non-linear Rician noise. In this block,
BN yields the distribution of images more stable, which greatly
simplifies parameter adjustment and alleviates the problem of
gradient disappearance.

Attention Block
In computer vision, the attention mechanism improves the
efficiency and accuracy of network to a certain extent. It
adjusts the weight of each channel through training in order
to enhance the influence of useful channels and suppress
the unnecessary channels. Exploring the relationship between
channels is beneficial to extract more vital content for the results
and improve the denoising performance. In this paper, we exploit
the maximum pooling and average pooling to the input feature
map first. Furthermore, the two pooling layers are convolved
separately. Then a sum of the convolutional layers yields the
channel weights (Woo et al., 2018). The structure of channel
attention is shown in Figure 4.

Loss Function
The loss function guides the further training of the network,
and thus the selection of a loss function is directly related to
the effect of execution. Different from the existing denoising
networks that predict potential clean images directly, FFA-DMRI
is able to estimate the residual images. Then subtracting the
residual image from the input original image can obtain the
clean images. Therefore, we use the mean square error (MSE)
(Ephraim and Malah, 1984) to calculate the gap between the
residual images generated by FFA-DMRI and the desired residual
images. The desired residual image is obtained by subtracting
noise-free image from noisy observed image. The loss function
is described as

L (θ) =
1

2M

M∑
k=1

||fFFA−DMRI (Sk)− (Sk − Gk) ||
2 (6)

Where S represents the noisy observed image and G stands
for the noise-free image. θ denotes the parameter of FFA-
DMRI training. M is the number of noisy-clean training
image pairs.

EXPERIMENTS

Data Acquisition and Training Settings
Deep learning is a data-driven technology. In other words,
it requires a large amount of data for training to achieve
promising performance. The network of FFA-DMRI is evaluated
on the public real brain database of the Alzheimer’s disease
neuroimaging initiative (ADNI)1. In our experiments, it consists
of 199 three-dimensional (3D) images of brain MRI. We slice
each 3D image to get the axial plane and select the slices that range
from 37 to 86 due to less information in the head and tail regions.
Then Rician noise is injected into images with noise levels of 5, 10,
20, and 30 according to formula (2), respectively. All the images
have a resolution of 145×121, and they are divided into three
parts; the training set contains 7,800 images, the test set includes
975 images, and the validation set consists of 975 images.

The network is trained with the PyTorch framework in Python
and employs the NVIDIA GeForce GTX 960. In some scenarios,
adaptive moment estimation (Adam) has better performance
than the stochastic gradient descent (SGD) (Zhang, 2018). Thus,
the optimizer used in this experiment is Adam (Kingma and
Ba, 2014). The initial learning rate is chosen as 0.0001, and it
is reduced by 0.5, 0.25, and 0.125 in the following training. The
batch size is set to four due to the trade-off between GPU memory
and computational speed.

Qualitative Metrics
There are two popular qualitative metrics to evaluate denoising
methods, including peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) (Kala and Deepa,
2018; Yu et al., 2019). PSNR calculates the distortion between
recovered images q

(
x, y

)
and ground truthp

(
x, y

)
. It can be

defined as

PSNR
(
p, q

)
= 10 log10

2552
×M × N∑

(x,y∈�) |p
(
x, y

)
− q

(
x, y

)
|2

(
dB
)
(7)

where M× N is the size of MR images and higher PSNR means
the less distortion in images.

The metrics of SSIM is based on three comparative
measurements, including luminance, contrast, and structure. Itis

1http://adni.loni.usc.edu/
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TABLE 1 | The average PSNR/dB results of different methods on the ADNI dataset at different noise levels.

Noise level λ BM3D NLM Wiener filter MRF WNNM IRCNN DnCNN FFA-DMRI (ours)

5 28.57 31.90 21.59 25.92 33.00 39.09 39.72 39.76

10 25.52 26.68 20.79 23.89 27.08 34.31 34.83 35.23

20 21.05 21.13 18.81 20.28 21.28 29.12 30.24 30.55

30 18.27 18.01 17.03 18.27 17.97 26.40 27.32 27.51

The best results at each noise level are highlighted in bold.

TABLE 2 | The average SSIM results of different methods on the ADNI dataset at different noise levels.

Noise level λ BM3D NLM Wiener filter MRF WNNM IRCNN DnCNN FFA-DMRI (ours)

5 0.5261 0.5477 0.3314 0.4897 0.5633 0.9914 0.9935 0.9946

10 0.4439 0.3850 0.2637 0.4117 0.4768 0.9797 0.9815 0.9850

20 0.3701 0.4654 0.2125 0.3423 0.3839 0.9320 0.9507 0.9586

30 0.3084 0.3143 0.1762 0.3084 0.2700 0.8907 0.9064 0.9166

The best results at each noise level are highlighted in bold.

A

B

C

FIGURE 5 | Visual inspections of brain MRI denoised by traditional methods. (A) MRI with noise of different levels. (B) The results of BM3D at different noise levels.
(C) The results of NLM at different noise levels.

more consistent with human visual perception (Wang et al.,
2004), that can be obtained by

SSIM
(
p, q

)
=

(
2upuq + c1

) (
2σpq + c2

)(
u2
p + u2

q

) (
σ2
p + σ2

q + c2

) (8)

where up, uq is the average of p, q, respectively. And σ2
p is the

variance of p; σ2
p denotes the variance of q, and σpq represents

the covariance of p and q. To avoid instability, SSIM appends two
constants including c1 and c2. The value range of SSIM is [0, 1].

Performance Comparison
In order to verify the effectiveness of the proposed FFA-
DMRI, comparative experiments are conducted under the
same dataset and parameters to guarantee fairness. The results
of different denoising schemes are evaluated in terms of
quantitative and qualitative metrics. Collectively, we compare
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A

B

D

C

FIGURE 6 | Visual inspections of brain MRI denoised by deep learning methods. (A) MRI with noise of different levels. (B) The results of IRCNN at different noise
levels. (C) The results of DnCNN at different noise levels. (D) the results of FFA-DMRI at different noise levels.

the proposed network FFA-DMRI with common denoising
algorithms, including NLM (Buades et al., 2011), BM3D
(Danielyan et al., 2011), MRF (Ji, 2019), Wiener filter (Jang and
Kim, 2001), WNNM (Gu et al., 2014), IRCNN (Zhang et al.,
2017b) and DnCNN (Zhang et al., 2017a).

Quantitative Metrics
Based on the above Settings, the average PNSR results of different
denoising methods are presented in Table 1, and the average
SSIM results are reported in Table 2.

It is known that the Rician noise depends on the images,
so removing it is more complicated than Gaussian additive
noise. From Table 1, the best result of PSNR at each noise
level is shown in bold. It can be observed that the proposed
FFA-DMRI outperforms other methods tested. For BM3D and
NLM methods, it is difficult to match similar regions at higher
noise levels. Besides, searching and matching regions consume

much time. Therefore, the traditional method does not perform
well on the dataset. It is noted that deep learning methods
achieve outstanding denoising results. In particular, among
the listed deep learning methods, the proposed FFA-DMRI
promotes the removing performance at each noise level. On
the specifics, FFA-DMRI exceeds IRCNN 1.43 dB at the noise
level of 20 and is superior to DnCNN at every noise level.
Additionally, we measured the results of the above methods in
terms of SSIM.

The metrics of SSIM indicates that the structural similarity
between recovered images and ground truth. As described in
Table 2, FFA-DMRI achieves the best performance. It brings an
improvement of 2.66% than IRCNN at the noise level of 20.
Note that when the noise level is 5, our method tends to the
highest value (the highest value in SSIM is 1), which shows that
recovered images perfectly restore noise-free images. Besides, the
value of SSIM is over 90% at each noise level for FFA-DMRI.
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Consistent with the results of PSNR, the traditional methods are
inferior to the deep learning methods in this dataset. In summary,
there is a significant improvement in brain MRI denoising,
which reconstructs the latent clean image with maintaining the
vital structure information. Thus FFA-DMRI is a competitive
denoising method in terms of quantitative analysis.

Qualitative Metrics
In practice, it is indispensable to evaluate image quality through
the human senses. In some cases, the metrics of SSIM and PSNR
are outstanding in computer vision tasks; however, the images
that do not satisfy human perception are distorted. In this paper,
we list the visual inspections of comparative experiments as
illustrated in Figures 5, 6.

From Figure 5, we illustrate traditional denoising methods
for comparison. It is noticeable that the BM3D and NLM
methods can remove a part of noise while generating the blurred
structure of brain. Meanwhile, some crucial details in original
images are lost. When the concentration of noise increases,
the removal effect is worse on speediness with poor visual
perception. In Figure 6, visual illustrations of deep learning
methods are shown. It can be seen that the effect of deep
learning methods is superior to traditional methods, which
remove background noise and recover most of the complex
brain structures.

In comparison with IRCNN, the proposed FFA-DMRI yields
clearer brain tissues and sharper edges after noise removal.
The method of DnCNN also achieves excellent results in
the experiments; however, FFA-DMRI maintains more subtle
features of the original image, and the contrast between
brain regions and background is stronger than DnCNN. The
obvious contrast contributes to enhancing the interpretation
and recognition of images and satisfies the needs of clinical
analysis. In general, FFA-DMRI we proposed performs well in the
quantitative and qualitative analysis.

CONCLUSION

In this article, we propose a network to remove Rician noise from
a brain MRI as well as FFA-DMRI. The network is composed
of a feature extraction block, a feature fusion block, and an
attention block. The feature extraction block exploits the spatial
attention mechanism to obtain the area of interest emphatically.
Moreover, we utilize dilated convolutions, which expand the
receptive fields, and we fuse local and global information to
boost the network performance. Then the channel attention
mechanism is employed to enhance the influence of essential
elements and suppress the useless channels. After the above steps
are carried out, FFA-DMRI is trained on the ADNI dataset. In
terms of quantitative evaluation, SSIM and PSNR are adopted.
Experimental results show that FFA-DMRI can effectively remove
Rician noise and maintain most of the crucial details. For
quantitative evaluation, it can be seen from visual inspection that
the recovered images are more consistent with human senses with
obvious contrast, clear brain tissues, and sharp edges. Therefore,
the proposed method FFA-DMRI is competitive in brain MRI
denoising, which can assist clinicians in diagnosis and treatment.
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